
Embracing Fluid Layouts
When I irst started making websites at the end of the 1990s, layout structures were
table based. More often than not, all the sectioning up of screen real estate was done
with percentages. For example, a left navigation column might be 20 percent whilst
the main content area would be 80 percent. There weren't the vast differences in
browser viewports we see today so these layouts worked and scaled well across
the limited range of viewports. Nobody much cared that sentences looked a little
different on one screen compared to another. However, as CSS-based designs took
over, it enabled web-based designs to more closely mimic print. With that transition,
for many (including myself), proportionally based layouts dwindled for many years
in favor of their rigid, pixel-based counterparts.

Like all great designs and solutions, they come back around. The mini car, permed
hair (I wish!), and lared jeans have all made their comebacks over the years. Now,
it's time for proportional layouts to make a re-appearance.

In this chapter, we shall:

•	 Learn why proportional layouts are necessary for responsive design

•	 Convert pixel-based element widths to proportional percentages

•	 Convert pixel-based typography sizes to their em-based equivalent
•	 Understand how to ind the context for any element
•	 Learn how to make images scale luidly
•	 Learn how to serve different images to different screen sizes
•	 Understand how media queries can work with luid images and layouts
•	 Create a responsive layout from scratch using a CSS grid system

Embracing Fluid Layouts

[62]

Fixed layouts aren't future proof
As I mentioned, since the "table layout" days, I've had little call to use proportional
layouts. Typically, I've been asked to code HTML and CSS that best matches a
design composite that almost always measures 950-1000 pixels wide. If the layout
was ever built with a proportional width (say, 90 percent), the complaints would
have arrived quickly, "It looks different on my monitor". Web pages with ixed,
pixel-based dimensions were the easiest way to match the ixed, pixel-based
dimensions of the composite.

Even in more recent times, when using media queries to produce a tweaked version
of a layout, speciic to a certain popular device such as an iPad or iPhone (as we did
in Chapter 2, Media Queries: Supporting Differing Viewports), the dimensions could
still be pixel-based as the viewport was known. However, whilst many might enjoy
the possibility of re-charging a client each time they need a site tweaked for today's
newest gizmo, it's not exactly a future proof way of building web pages. As more
and more varied viewports are being introduced, we need some way of provisioning
for the unknown.

Why proportional layouts are essential

for responsive designs
Whist media queries are incredibly powerful we are now aware of some limitations.
Any ixed width design, using only media queries to adapt for different viewports
will merely "snap" from one set of CSS media query rules to the next with no linear
progression between the two. From our own experience in Chapter 2, Media Queries:
Supporting Differing Viewports, where a viewport fell between the ixed-width ranges
of our media queries (as may be the case for future unknown devices and their
viewports) the design required horizontal scrolling in the browser. Instead, we want
to create a design that lexes and looks good on all viewports, not just particular ones
speciied in a media query. I'll cut to the chase. (See what I did there? It's a ilm-based
saying to match our ilm-based site… No? I'll get my coat…) We need to switch our
ixed, pixel-based layout to a luid proportional one. This will enable elements to
scale relative to the viewport until one media query or another modiies the styling.

Chapter 3

[63]

The symbiosis of proportional layout and media queries

I've already mentioned Ethan Marcotte's article on Responsive Web
Design at A List Apart (http://www.alistapart.com/articles/
responsive-web-design/). Whilst the tools he used (luid layout
and images, and media queries) were not new, the application and
embodiment of the ideas into a single coherent methodology were.
For many working in web design, his article was the genesis of new
possibilities. Indeed, new ways to create web pages that offered the
best of both worlds; a way to have a luid lexible design based on a
proportional layout, whilst being able to limit how far elements could lex
with media queries. Putting them together forms the core of a responsive
design, creating something truly greater than the sum of its parts.

Amending a design from ixed to
proportional layout
Typically, for the foreseeable future, any design composite you receive or create will
have ixed dimensions. Currently we measure (in pixels) the element sizes, margins,
and so on within the graphics iles from Photoshop, Fireworks, and so on. We then
punch these dimensions directly into our CSS. The same goes for text sizes. We click
on a text element in our image editor of choice, note the font size, and then enter it
(again, often measured in pixels) into the relevant CSS rule. So how do we convert
our ixed dimensions into proportional ones?

A formula to remember
It's possible I'm coming off too much of an Ethan Marcotte fan boy, but at this point
it's essential that I provide another large tip of the hat (it should probably be a
bow, maybe even a kneel) to him. In Dan Cederholm's excellent book, Handcrafted
CSS, Mr. Marcotte contributed a chapter covering luid grids. In it, he provided a
simple and consistent formula for converting ixed width pixels into proportional
percentages:

target ÷ context = result

Smells a bit like an equation to you? Fear not, when creating a responsive design,
this formula soon becomes your new best friend. Rather than talk any more theory,
let's put the formula to work converting the current ixed dimension for the And the
winner isn't... site to a luid percentage based layout.

Embracing Fluid Layouts

[64]

If you remember, back in Chapter 2, Media Queries: Supporting Differing Viewports, we
established that the basic markup structure of our site looked like this:

<div id="wrapper">

 <!-- the header and navigation -->

 <div id="header">

 <div id="navigation">

 navigation1

 navigation2

 </div>

 </div>

 <!-- the sidebar -->

 <div id="sidebar">

 <p>here is the sidebar</p>

 </div>

 <!-- the content -->

 <div id="content">

 <p>here is the content</p>

 </div>

 <!-- the footer -->

 <div id="footer">

 <p>Here is the footer</p>

 </div>

</div>

Content was later added but what's important to note here is the CSS we are
currently using to set the widths of the main structural (header, navigation,
sidebar, content, and footer) elements. Note, I've omitted many of the styling
rules so we can concentrate on structure:

#wrapper {

 margin-right: auto;

 margin-left: auto;

 width: 960px;

}

#header {

 margin-right: 10px;

 margin-left: 10px;

 width: 940px;

}

#navigation {

Chapter 3

[63]

 padding-bottom: 25px;

 margin-top: 26px;

 margin-left: -10px;

 padding-right: 10px;

 padding-left: 10px;

 width: 940px;

}

#navigation ul li {

 display: inline-block;

}

#content {

 margin-top: 58px;

 margin-right: 10px;

 float: right;

 width: 698px;

}

#sidebar {

 border-right-color: #e8e8e8;

 border-right-style: solid;

 border-right-width: 2px;

 margin-top: 58px;
 padding-right: 10px;

 margin-right: 10px;

 margin-left: 10px;

 float: left;

 width: 220px;

}

#footer {

 float: left;

 margin-top: 20px;

 margin-right: 10px;

 margin-left: 10px;

 clear: both;

 width: 940px;

}

All the values are currently set using pixels. Let's work from the outermost element
and change them to proportional percentages using the target ÷ context = result
formula.

Embracing Fluid Layouts

[66]

All our content currently sits within a div with an ID of #wrapper. You can see by the
CSS above that it's set with automatic margin and a width of 960 px. As the outermost
div, how do we deine what percentage of the viewport width it should be?

Setting a context for proportional elements
We need something to "hold" and become the context for all the proportional
elements (content, sidebar, footer, and so on) we intend to contain within our design.
We therefore need to set a proportional value for the width that the #wrapper should
be in relation to the viewport size. For now, let's knock off a naught and roll with 96
percent and see what happens. Here's the amended rule for #wrapper:

#wrapper {

 margin-right: auto;

 margin-left: auto;

 width: 96%; /* Holding outermost DIV */

}

And here's how it looks in the browser window:

Chapter 3

[63]

So far, so good! 96 percent actually works quite well here although we could
have opted for 100 or 90 percents—whatever we felt and set the design within the
viewport in the most aesthetically pleasing manner.

Now changing from ixed to proportional gets a little more complicated as we move
inwards. Let's look at the header section irst. Consider the formula again, target
÷ context = result. Our #header div (the target) sits within the #wrapper div (the
context). Therefore, we take our #header (the target) width of 940 pixels, divide
it by the width of the context (the #wrapper), which was 960 px and our result is
.979166667. We can turn this into a percentage by moving the decimal place two
digits to the right and we now have a percentage width for the header of 97.9166667.
Let's add that to our CSS:

#header {

 margin-right: 10px;

 margin-left: 10px;

 width: 97.9166667%; /* 940 ÷ 960 */

}

And as both the #navigation and the #footer divs also have the same declared
width, we can swap both of those pixel values to the same percentage-based rule.

Finally, before we take a peek in the browser, let's turn to the #content and
#sidebar div's. As the context is still the same (960 px) we just need to divide our
target size by that igure. Our #content is currently 698 px so divide that value by
960 and our answer is .727083333. Move the decimal place and we have a result of
72.7083333 percent—that's the width of the #content div in percentage terms. Our
sidebar is currently 220 px but there's also a 2 px border to consider. I don't want
the thickness of the right-hand border to expand or contract proportionately so that
will stay at 2 px. Because of that I need to subtract some size from the width of the
sidebar. So in the case of this sidebar, I have subtracted 2 px from the sidebar width
and then performed the same calculation. I've divided the target (now, 218 px) by
the context (960 px) and the answer is .227083333. Shift the decimal and we have a
result of 22.7083333 percent for the sidebar. After amending all the pixel widths to
percentages, the following is what the relevant CSS looks like:

#wrapper {

 margin-right: auto;

 margin-left: auto;

 width: 96%; /* Holding outermost DIV */
}

#header {

 margin-right: 10px;

 margin-left: 10px;

Embracing Fluid Layouts

[68]

 width: 97.9166667%; /* 940 ÷ 960 */
}

#navigation {

 padding-bottom: 25px;

 margin-top: 26px;

 margin-left: -10px;

 padding-right: 10px;

 padding-left: 10px;

 width: 72.7083333%; /* 698 ÷ 960 */
}

#navigation ul li {

 display: inline-block;

}

#content {

 margin-top: 58px;

 margin-right: 10px;

 float: right;

 width: 72.7083333%; /* 698 ÷ 960 */
}

#sidebar {

 border-right-color: #e8e8e8;

 border-right-style: solid;

 border-right-width: 2px;

 margin-top: 58px;

 margin-right: 10px;

 margin-left: 10px;

 float: left;

 width: 22.7083333%; /* 218 ÷ 960 */
}

#footer {

 float: left;

 margin-top: 20px;

 margin-right: 10px;

 margin-left: 10px;

 clear: both;

 width: 97.9166667%; /* 940 ÷ 960 */
}

Chapter 3

[63]

The following screenshot shows what it looks like in Firefox with the viewport
around 1000 px wide:

All good so far. Now, let's go ahead and replace all the 10 px instances used for
padding and margin throughout with their proportional equivalent using the same
target ÷ context = result formula. As all the 10 px widths have the same 960 px context,
the width in percentage terms is 1.0416667 percent (10 ÷ 960).

Embracing Fluid Layouts

[70]

Can't we just round the numbers?

Some critics of responsive design techniques (for example, see http://
tripleodeon.com/2010/10/not-a-mobile-web-merely-a-
320px-wide-one/) argue that entering numbers such as .550724638 em
into stylesheets is daft. You may wonder yourself, why aren't these simply
rounded to something more sensible? The counter argument is that it's a
more accurate answer to the question being asked. Providing a browser
with the most accurate answer should make it more able to display that
answer in the most accurate manner. As a related aside, if you stayed
awake through more than a couple math classes I'm sure you've heard
of the Golden Ratio (http://en.wikipedia.org/wiki/Golden_
ratio)? The mathematical ratio, found and used throughout almost every
discipline we know, is expressed as approximately 1:1.61803398874989 (if
you want it to 10,000 decimal places, knock yourself out here http://
www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/
phi10000dps.txt). Not a neat number by any means but quite an
important one. If the Golden Ratio can suffer such precise measurements,
I'm inclined to believe our web designs can too.

Everything still looks ine at the same viewport size. However, the navigation
area isn't behaving. If I bring the viewport size in, just a little, the links start to
span two lines:

http://tripleodeon.com/2010/10/not-a-mobile-web-merely-a-320px-wide-one/
http://tripleodeon.com/2010/10/not-a-mobile-web-merely-a-320px-wide-one/

Chapter 3

[63]

Furthermore, if I expand my viewport, the margin between the links doesn't increase
proportionally. Let's take a look at the CSS associated with the navigation and try
and igure out why:

#navigation {
 padding-bottom: 25px;
 margin-top: 26px;
 margin-left: -1.0416667%; /* 10 ÷ 960 */
 padding-right: 1.0416667%; /* 10 ÷ 960 */
 padding-left: 1.0416667%; /* 10 ÷ 960 */
 width: 97.9166667%; /* 940 ÷ 960 */
 background-repeat: repeat-x;
 background-image: url(../img/atwiNavBg.png);
 border-bottom-color: #bfbfbf;
 border-bottom-style: double; border-bottom-width: 4px;
}

#navigation ul li {
 display: inline-block;
}

#navigation ul li a {
 height: 42px;
 line-height: 42px;
 margin-right: 25px;
 text-decoration: none;
 text-transform: uppercase;
 font-family: Arial, "Lucida Grande", Verdana, sans-serif;
 font-size: 27px;
 color: black;
}

Well, on irst glance, looks like our third rule there, the #navigation ul li a, still has
a pixel-based margin of 25 px. Let's go ahead and ix that with our trusty formula. As
the #navigation div is based on 940 px our result should be 2.6595745 percent. So
we'll change that rule to be as follows:

#navigation ul li a {
 height: 42px;
 line-height: 42px;
 margin-right: 2.6595745%; /* 25 ÷ 940 */

 text-decoration: none;
 text-transform: uppercase;
 font-family: Arial, "Lucida Grande", Verdana, sans-serif;
 font-size: 27px;
 color: black;
}

Embracing Fluid Layouts

[72]

That was easy enough! Let's just check all is OK in the browser…

Oh, wait, that isn't exactly what we were gunning for. OK, the links aren't spanning
two lines but we don't have the correct proportional margin value, clearly. The
navigation links look like one big word, and not one I can ind in my dictionary…

It's always important to remember the context
Considering our formula again (target ÷ context = result), it's possible to
understand why this issue is occurring. Our problem here is the context.
Here's the relevant markup:

<div id="navigation">

 Why?

Chapter 3

[63]

 Synopsis
 Stills/Photos
 Videos/clips
 Quotes
 Quiz

</div>

As you can see our links sit within the tags. They are the
context for our proportional margin. Looking at the CSS for the tags, we
can see there are no width values set:

#navigation ul li { display: inline-block; }

As if often the case, it turns out that there are various ways of solving this problem.
We could add an explicit width to the tags but that would either have to be
ixed-width pixels or a percentage of the containing element (the navigation div),
neither of which allows any lexibility for the text that ultimately sits within them.

We could instead amend the CSS for the tags, changing inline-block to be
simply inline:

#navigation ul li {
 display: inline;
}

Opting for display: inline; (which stops the elements behaving like block
level elements), also makes the navigation render horizontally in earlier versions
of Internet Explorer (versions 6 and 7) that have problems with inline-block.
However, I'm a fan of inline-block as it gives greater control over the margins and
padding for modern browsers so instead I'm going to leave the tags as inline-
blocks (and perhaps add an override style for IE 6 and IE 7, later) and instead move
my percentage based margin rule from the <a> tag (which has no explicit context) to
the containing block instead. Here's what the amended rules now look like:

#navigation ul li {
 display: inline-block;
 margin-right: 2.6595745%; /* 25 ÷ 940 */
}

#navigation ul li a {
 height: 42px;
 line-height: 42px;
 text-decoration: none;
 text-transform: uppercase;
 font-family: Arial, "Lucida Grande", Verdana, sans-serif;
 font-size: 27px;
 color: black;
}

Embracing Fluid Layouts

[74]

And the following screenshot shows how it looks in the browser with a 1200 px
wide viewport:

So the navigation is getting there now, but I still have the problem of the navigation
links spanning two lines as the viewport gets smaller, right until I get below 768 px
wide when the media query we wrote in Chapter 2, Media Queries: Supporting Differing
Viewports, then overrides the current navigation styles. Before we start ixing the
navigation I'm going to switch all my typography sizes from ixed size pixels to the
proportional unit, "ems". Once that's done we'll look at the other elephant in the
room, getting our images to scale with the design.

Chapter 3

[63]

Using ems rather than pixels for
typography
In years gone by, web designers primarily used ems for sizing typography, rather
than pixels, because earlier versions of Internet Explorer were unable to zoom text
set in pixels. For some time, modern browsers have been able to zoom text on screen,
even if the size values of the text were declared in pixels. So, why is using ems
instead of pixels required or preferable? Here are two obvious reasons: irstly anyone
still using Internet Explorer 6 (yes, those two) automatically gets the ability to zoom
the text and secondly it makes life for you, the designer/developer, much easier.
The size of an em is in relation to the size of its context. If we set a font size of 100
percent to our <body> tag and style all further typography using ems, they will all
be affected by that initial declaration. The upshot of this being that if, having
completed all the necessary typesetting, a client asks for all our fonts to be a little
bigger we can merely change the body font size and all other typography changes
in proportion.

Using our same target ÷ context = result formula, I'm going to convert every pixel
based font size to ems. It's worth knowing that all modern desktop browsers use
16 px as the default font size (unless explicitly stated otherwise). Therefore, from
the outset, applying any of the following rules to the body tag will provide the
same result:

font-size: 100%;

font-size: 16px;

font-size: 1em;

As an example, the irst pixel-based font size in our stylesheet controls the site's title,
AND THE WINNER ISN'T… at top-left:

#logo {

 display: block;

 padding-top: 75px;

 color: #0d0c0c;

 text-transform: uppercase;

 font-family: Arial, "Lucida Grande", Verdana, sans-serif;

 font-size: 48px;
}

#logo span { color: #dfdada; }

Embracing Fluid Layouts

[76]

Therefore, 48 ÷ 16 = 3. So our style changes to the following:

#logo {

 display: block;

 padding-top: 75px;

 color: #0d0c0c;

 text-transform: uppercase;

 font-family: Arial, "Lucida Grande", Verdana, sans-serif;

 font-size: 3em; /* 48 ÷ 16 = 3*/

}

You can apply this same logic throughout. If at any point things go haywire, it's
probable the context for your target has changed. For example, consider the <h1>
within the markup of our page:

<h1>Every year when I watch the Oscars I'm annoyed...</
h1>

Our new em-based CSS looks like this:

#content h1 {

 font-family: Arial, Helvetica, Verdana, sans-serif;

 text-transform: uppercase;

 font-size: 4.3125em; } /* 69 ÷ 16 */

#content h1 span {

 display: block;

 line-height: 1.052631579em; /* 40 ÷ 38 */

 color: #757474;

 font-size: .550724638em; /* 38 ÷ 69 */

}

You can see here that the font size (which was 38 px) of the element is in
relation to the parent element (which was 69 px). Furthermore, the line-height
(which was 40 px) is set in relation to the font itself (which was 38 px).

What on earth is an em?
The term em is simply a way of expressing the letter "M" in written
form and is pronounced as such. Historically, the letter "M" was used to
establish the size of a given font due to the letter "M" being the largest
(widest) of the letters. Nowadays, em as a measurement deines the
proportion of a given letter's width and height with respect to the point
size of a given font.

Chapter 3

[63]

So our structure is now resizing and we've switched our pixel-based type to ems.
However, we still have to igure out how to scale images as the viewport resizes so
let's look at that now.

Fluid images
Making images scale with a luid layout can be achieved simply for modern
browsers (including IE 7+). It's as simple as declaring the following in the CSS:

img {

 max-width: 100%;

}

This makes any images automatically scale to up to 100 percent of their containing
element. Furthermore, the same attribute and property can be applied to other
media. For example:

img,object,video,embed {

 max-width: 100%;

}

And they will scale too, apart from a few notable exceptions such as <iframe>
videos from YouTube but we'll wrestle those into submission in Chapter 4, HTML5 for
Responsive Designs. For now though, we'll concentrate on images as the principles are
the same, regardless of the media.

There are some important considerations in using this approach. Firstly, it requires
some forward planning—the images inserted must be large enough to scale to larger
viewport sizes. This leads to a further, perhaps more important consideration. No
matter the viewport size or device viewing the site, they will still have to download
the large images, even though on certain devices the viewport may only need to see
an image 25 percent of its actual size. This is an important bandwidth consideration
in some instances so we'll revisit this second problem shortly. For now, let's just get
our images scaling.

Making images scale with the viewport
Consider our sidebar with the posters of two cracking movies and two absolute
stinkers (this isn't up for discussion). The markup is currently as follows:

<!-- the sidebar -->

 <div id="sidebar">

 <div class="sideBlock unSung">

Embracing Fluid Layouts

[78]

 <h4>Unsung heroes...</h4>

 <img src="img/midnightRun.jpg" alt="Midnight Run"
width="99" height="135" />

 <img src="img/wyattEarp.jpg" alt="Wyatt Earp"
width="99" height="135" />

 </div>

 <div class="sideBlock overHyped">

 <h4>Overhyped nonsense...</h4>

 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
width="99" height="135" />

 <img src="img/kingKong.jpg" alt="King Kong"
width="99" height="135" />

 </div>

 </div>

Although I've added the max-width: 100% declaration to the img element in my
CSS, nothing has changed and the images aren't scaling as I expand the viewport:

Chapter 3

[63]

The reason here is that I've explicitly stated both the width and height of my images
in the markup:

<img src="img/wyattEarp.jpg" alt="Wyatt Earp" width="99" height="135"
/>

Another schoolboy error! So I'll amend the markup associated with the images,
removing the height and width attributes:

Let's see what that does for us by refreshing the browser window:

Well, that's certainly working! But that's introduced a further problem. Because the
images are scaling to ill up to 100 percent of the width of their containing element,
they're each illing the sidebar. As ever, there are various ways to ix this…

Speciic rules for speciic images
I could add an additional class to each image as done in the following code snippet:

Embracing Fluid Layouts

[80]

And then set a speciic rule for the width. However, instead I'm going to leave the
markup as is and use CSS speciicity to overrule the existing max-width rule with a
further, more speciic rule for my sidebar images:

img {
 max-width: 100%;
}

.sideBlock img {
 max-width: 45%;
}

The following screenshot shows how things look in the browser now:

Using CSS speciicity in this way allows us to add additional control to the width of
any other images or media, too. Also, in Chapter 5, CSS3: Selectors, Typography, and
Color Modes we'll look at how CSS3's powerful new selectors let us target almost any
element without the need for extra markup or introducing JavaScript frameworks
such as jQuery to do our dirty work.

Chapter 3

[63]

For the sidebar images I decided on a width of 45 percent simply because I know
that I need to add a little margin between the images later, and so having two images
totaling 90 percent of the width gives me a little room (10 percent) to play with.

Now that the sidebar images are working, I'll also remove the width and height
attributes on the Oscar statue image in the markup. However, unless I set a
proportional width value for it, it's not going to scale so I've tweaked the associated
CSS to set a proportional width using good ol' trusty target ÷ context = result.

.oscarMain {

 float: left;

 margin-top: -28px;

 width: 28.9398281%; /* 698 ÷ 202 */

}

Putting the brakes on luid images
So now the images are scaling nicely as the viewport expands and contracts.
However, if by expanding the viewport the image scales beyond its native size,
things get very ugly. Take a look at Oscar in the following screenshot, with the
viewport up to 1900 px:

Embracing Fluid Layouts

[82]

The oscar.png image is actually 202 px wide. However, with the viewport over 1900
px wide and the image scaling to it, it's actually displaying over 300 px wide. We
can easily "put the brakes on" this image by setting another more speciic rule:

.oscarMain {
 float: left;
 margin-top: -28px;
 width: 28.9398281%; /* 698 ÷ 202 */
 max-width: 202px;
}

That would let the oscar.png image scale because of the more general image rule
but never go beyond the more speciic max-width property set above. Here's how
the page looks with this rule set:

The incredibly versatile max-width property
Another tack to limit things expanding limitlessly would be to set a max-width
property on our entire #wrapper div like this:

#wrapper {
 margin-right: auto;
 margin-left: auto;
 width: 96%; /* Holding outermost DIV */
 max-width: 1414px;
}

Chapter 3

[63]

This means the design will scale to 96 percent of the viewport but will never expand
beyond 1414 px wide (I settled on 1414 px as on most modern browsers it cuts the
bunting lags off at the end of a lag rather than halfway through one). The following
screenshot shows how it looks like with a viewport of around 1900 px:

Obviously these are merely options. It, however, proves the versatility of a luid grid
and how we can control the low with just a few speciic declarations.

Serving different images for different
screen sizes
We have our images resizing nicely and we now understand how we can limit the
display size of speciic images should we choose to. However, earlier in the chapter
we noted the inherent problem with scaling images. They must be physically larger
than they are displayed in order to render well. If they aren't, they start to look a
mess. Because of this, images, in terms of ile size, are almost always bigger than they
need to be given the likely display size.

Embracing Fluid Layouts

[84]

Various people have tackled the problem, attempting to provide smaller images to
smaller screens. The irst notable example was the Filament Group's "Responsive
Images" (http://filamentgroup.com/lab/responsive_images_experimenting_
with_context_aware_image_sizing/). However, recently, I've switched to Matt
Wilcox's "Adaptive Images" (http://adaptive-images.com). The Filament Group's
solution required the image related markup to be altered. Matt's solution doesn't
and automatically creates the (smaller) resized images based on the full size image
already speciied in the markup. This solution therefore allows images to be resized
and served to the user as needed based upon a number of screen size break points.
Let's jump in and get Adaptive Images up and running.

Setting up Adaptive Images
The Adaptive Images solution requires Apache 2, PHP 5.x, and GD Lib. So you'll
need to be developing on an appropriate server to see the beneits. So, go ahead,
download the .zip ile and let's get started:

http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing/
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing/
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing/
http://adaptive-images.com

Chapter 3

[63]

Extract the content of the ZIP ile and copy the adaptive-images.php and
.htaccess iles into the root directory of your site. If you are already using an
.htaccess ile in your site's root directory, do not overwrite it. Instead read the
additional information in the instructions.htm ile included in the download.

Now create a folder in the root of your site called ai-cache.

Use your favourite FTP client to set write permissions of 777.

Embracing Fluid Layouts

[86]

Now copy the following JavaScript into the <head> tag of each page that needs
adaptive images:

<script>document.cookie='resolution='+Math.max(screen.width,screen.
height)+'; path=/';</script>

Note that if you're not using HTML5 (we'll be changing to HTML5 in the next
chapter), if you want the page to validate, you'll need to add the type attribute. So
the script should be as follows:

<script type="text/javascript">document.cookie='resolution='+Math.
max(screen.width,screen.height)+'; path=/';</script>

It's important that the JavaScript is in the head (preferably the irst piece of script)
because it needs to work before the page has inished loading, and before any images
have been requested. Here it is added to the <head> section of our site in progress:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<meta name="viewport" content="width=device-width,initial-scale=1.0"
/>

<title>And the winner isn't…</title>

<script type="text/javascript">document.cookie='resolution='+Math.
max(screen.width,screen.height)+'; path=/';</script>

<link href="css/main.css" rel="stylesheet" type="text/css" />

</head>

Put background images somewhere else
In the past, I've typically placed all my images (both those used for background CSS
elements and inline images inserted in the markup) in a single folder such as images
or img. However, if using Adaptive Images, it's advisable that images to be used
with CSS as background images (or any other images you don't want to be re-sized)
be placed in a different directory. Adaptive Images by default deines a folder called
assets to keep images you don't want resizing within. Therefore, if you want any
images left alone, keep them there. If you'd like to use a different folder (or more
than one) you can amend the .htaccess ile as follows:

<IfModule mod_rewrite.c>

 Options +FollowSymlinks

 RewriteEngine On

Chapter 3

[63]

 # Adaptive-Images --

 RewriteCond %{REQUEST_URI} !assets

 RewriteCond %{REQUEST_URI} !bkg

 # Send any GIF, JPG, or PNG request that IS NOT stored inside one of
the above directories

 # to adaptive-images.php so we can select appropriately sized
versions

 RewriteRule \.(?:jpe?g|gif|png)$ adaptive-images.php

 # END Adaptive-Images --

</IfModule>

In this example, we have speciied that we don't want images within assets or
bkg adapting. Conversely, should you wish to explicitly state that you only want
images within certain folders to be adapted, you can omit the exclamation mark
from the rule. For example, if I only wanted images in a subfolder of my site, called
andthewinnerisnt, I would edit the .htaccess ile as follows:

<IfModule mod_rewrite.c>

 Options +FollowSymlinks

 RewriteEngine On

 # Adaptive-Images --

 RewriteCond %{REQUEST_URI} andthewinnerisnt

 # Send any GIF, JPG, or PNG request that IS NOT stored inside one of
the above directories

 # to adaptive-images.php so we can select appropriately sized
versions

 RewriteRule \.(?:jpe?g|gif|png)$ adaptive-images.php

 # END Adaptive-Images --

</IfModule>

Embracing Fluid Layouts

[88]

That is all there is to it. The easiest way to check that it's up and running is to
insert a large image into a page, and then visit the page with a smart phone. If
you check the contents of your ai-cache folder with an FTP program you should
see iles and folders within named breakpoint folders, for example, 480 (see the
following screenshot):

Adaptive Images isn't restricted to static sites. It can also be used alongside Content
Management Systems and there are also workarounds for when JavaScript is
unavailable. With Adaptive Images, there is a way to serve entirely different images
based upon screen size, saving bandwidth overheads for devices that wouldn't see
the beneit of the default full size images.

Chapter 3

[63]

Where luid grids and media queries
come together
If you remember, earlier in the chapter, our navigation links were still spanning
multiple lines at certain viewport widths. We can ix this problem with media
queries. If our links fall apart at 1060 px and work again at 768 px (where our
earlier media query takes over), let's set some additional font styles for the
ranges in-between:

@media screen and (min-width: 1001px) and (max-width: 1080px) {
#navigation ul li a { font-size: 1.4em; }
}
@media screen and (min-width: 805px) and (max-width: 1000px) {
 #navigation ul li a { font-size: 1.25em; }
}
@media screen and (min-width: 769px) and (max-width: 804px) {
 #navigation ul li a { font-size: 1.1em; }
}

As you can see, we're changing the font size based upon the viewport width and the
result is a set of navigation links that always sit on one line, throughout the range of
769 px to ininity. Evidence again of the symbiosis between media queries and luid
layouts—media queries limit the shortfalls of a luid layout and a luid layout eases
the change from one set of deined styles within a media query to another.

CSS Grid systems
CSS Grid systems/frameworks are a potentially divisive subject. Some designers
swear by them, others swear at them. In a bid to minimize hate mail, I'm going to say
I sit entirely on the fence. Whilst I can understand why some developers think they
are superluous and in certain instances create extraneous code, I can also appreciate
their value for rapidly prototyping layouts.

Here are a few CSS frameworks that offer varying degrees of "responsive" support:

•	 Semantic (http://semantic.gs)

•	 Skeleton (http://getskeleton.com)

•	 Less Framework (http://lessframework.com)

•	 1140 CSS Grid (http://cssgrid.net)

•	 Columnal (http://www.columnal.com)

Of these, I personally favor the Columnal grid system as it has a luid grid built-in
alongside media queries and also uses similar CSS classes as 960.gs, the popular
ixed-width grid system that most developers and designers are familiar with.

http://cssgrid.net/
http://www.columnal.com

Embracing Fluid Layouts

[90]

Alpha, Omega, and other common grid classes

Many CSS grid systems use speciic CSS classes to perform everyday
layout tasks. The row and container classes are self-explanatory but
there are often many more. Therefore, always check any grid system's
documentation for any other classes that will make life easier. For
example, other typical de facto classes used in CSS Grid systems are
alpha and omega—for the irst and last items in a row respectively (the
alpha and omega classes remove padding or margin) and .col_x where
x is the number for the amount of columns the item should span (for
example, col_6 for six columns).

Rapidly building our site with a Grid system
Let's suppose we hadn't already built our luid grid, nor had we written any media
queries. We're handed the original And the winner isn't... homepage composite PSD
and told to get the basic layout structure up and running in HTML and CSS as
quickly as possible. Let's see if the Columnal grid system will help us achieve
that goal.

In our original PSD, it was easy to see the layout was based on 16 columns. The
Columnal grid system however only supports up to 12 columns so let's overlay 12
columns over the PSD instead of the original 16:

Chapter 3

[63]

Having downloaded Columnal and extracted the contents of the ZIP ile, we'll
duplicate the existing page and then link to columnal.css rather than main.css
in the <head>. To create visual structure using Columnal, the key is in adding the
correct div classes in the markup. Here is the full markup of the page up to
this point:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<meta name="viewport" content="width=device-width,initial-scale=1.0"
/>

<title>And the winner isn't…</title>

<script type="text/javascript">document.cookie='resolution='+Math.
max(screen.width,screen.height)+'; path=/';</script>

<link href="css/columnal.css" rel="stylesheet" type="text/css" />

</head>

<body>

<div id="wrapper">

 <!-- the header and navigation -->

 <div id="header">

 <div id="logo">And the winner isn't...</div>

 <div id="navigation">

 Why?

 Synopsis

 Stills/Photos

 Videos/clips

 Quotes

 Quiz

 </div>

 </div>

 <!-- the content -->

 <div id="content">

 <h1>Every year when I watch the Oscars I'm annoyed...</
span></h1>

 <p>that films like King Kong, Moulin Rouge and Munich get the
statue whilst the real cinematic heroes lose out. Not very Hollywood
is it?</p>

Embracing Fluid Layouts

[92]

<p>We're here to put things right. </p>
 these should have won »
 </div>
 <!-- the sidebar -->
 <div id="sidebar">
 <div class="sideBlock unSung">
 <h4>Unsung heroes...</h4>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>
 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />
 </div>
 <div class="sideBlock overHyped">
 <h4>Overhyped nonsense...</h4>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>
 </div>
 <!-- the footer -->
 <div id="footer">
 <p>Note: our opinion is absolutely correct. You are wrong, even if
you think you are right. That's a fact. Deal with it.</p>
 </div>

</div>
</body>
</html>

First of all, we need to specify that our #wrapper div is the container for all elements
so we'll add the .container class to it:

<div id="wrapper" class="container">

Working down the page we can see that our AND THE WINNER ISN'T text is the
irst row. Therefore, we'll add the.row class to that element:

<div id="header" class="row">

Our logo, although just text, sits within this row and spans the entire 12 columns.
Therefore we'll add .col_12 to it:

<div id="logo" class="col_12">And the winner isn't...</
div>

Then the navigation is the next row so we'll add a .row class to that:

<div id="navigation" class="row">

Chapter 3

[63]

And on the process goes, adding .row and .col_x classes as necessary. We'll jump
ahead at this point, as I'm concerned the repetition of this process may have you
nodding off. Instead, here is the entire amended markup. Note, it was also necessary
to move the Oscar image and set it in its own column. Plus add a wrapping .row div
around our #content and #sidebar.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta name="viewport" content="width=device-width,initial-scale=1.0"
/>
<title>And the winner isn't…</title>
<script type="text/javascript">document.cookie='resolution='+Math.
max(screen.width,screen.height)+'; path=/';</script>
<link href="css/columnal.css" rel="stylesheet" type="text/css" />
<link href="css/custom.css" rel="stylesheet" type="text/css" />

</head>

<body>

<div id="wrapper" class="container">
 <!-- the header and navigation -->
 <div id="header" class="row">
 <div id="logo" class="col_12">And the winner isn't...</
span></div>
 <div id="navigation" class="row">

 Why?
 Synopsis
 Stills/Photos
 Videos/clips
 Quotes
 Quiz

 </div>
 </div>
 <div class="row">
 <!-- the content -->
 <div id="content" class="col_9 alpha omega">
 <img class="oscarMain col_3" src="img/oscar.png" alt="atwi_
oscar" />
 <div class="col_6 omega">
 <h1>Every year when I watch the Oscars I'm annoyed...</
span></h1>

Embracing Fluid Layouts

[94]

 <p>that films like King Kong, Moulin Rouge and Munich get the
statue whilst the real cinematic heroes lose out. Not very Hollywood
is it?</p>
 <p>We're here to put things right. </p>
 these should have won »
 </div>
 </div>
 <!-- the sidebar -->
 <div id="sidebar" class="col_3">
 <div class="sideBlock unSung">
 <h4>Unsung heroes...</h4>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>
 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />
 </div>
 <div class="sideBlock overHyped">
 <h4>Overhyped nonsense...</h4>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>
 </div>
 </div>
 <!-- the footer -->
 <div id="footer" class="row">
 <p>Note: our opinion is absolutely correct. You are wrong, even if
you think you are right. That's a fact. Deal with it.</p>
 </div>

</div>
</body>
</html>

It was also necessary to add some extra CSS styles into a custom.css ile. The
content of this ile is as follows:

#navigation ul li {
 display: inline-block;
}

#content {
 float: right;
}

#sidebar {
 float: left;
}

.sideBlock {

Chapter 3

[63]

 width: 100%;
}

.sideBlock img {
 max-width: 45%;
 float:left;
}

.footer {
 float: left;
}

With these basic changes done, a quick look in the browser window shows that our
basic structure is in place and scales with the browser viewport:

There's obviously a lot of detail work to still be done (I know, that's more than a
slight understatement) but if you need a fast way of creating a basic responsive
structure, CSS Grid systems such as Columnal are worthy of consideration.

Embracing Fluid Layouts

[96]

Summary
In this chapter, we've learned how to change a rigid pixel-based structure to a
lexible percentage-based one. We've also learned how to use ems, rather than
pixels for more lexible typesetting. We now also understand how we can make
images respond and resize luidly as well as implementing a server-based solution
for serving entirely different images based upon device screen size. Finally, we've
experimented with a responsive CSS Grid system that allows us to rapidly prototype
responsive structures with very minimal effort.

However, until this point we've been pursuing our responsive quest using HTML
4.01 for our markup. In Chapter 1, Getting Started with HTML5, CSS3, and Responsive
Web Design, we touched upon some of the economies that HTML5 offers us. These
economies are particularly important and relevant for responsive designs where
a "mobile irst" mindset lends itself to the leanest, fastest, and most semantic
code possible. In the next chapter, we're going to get to grips with HTML5 and
modify our markup to take advantage of the latest and greatest iteration of the
HTML speciication.

